
Connor Sorrell—Lab 15 Ecen 3730

Investigating good vs. bad design on a switching noise board. Specifically, comparing 3 identical circuits but with different layouts.

	Rise Time	Fall Time	Voltage Collapse Q_Hi	Ground Bounce Q_Lo
Return Plane w/ Close Decoupling Cap. GOOD	~1.5 ns	~1.3ns	0.95 V Rising Edge, 0.43 V Falling Edge	0.45 V Rising Edge, 0.45 V Falling Edge
Return Plane w/ Far Decoupling Cap. GOOD/FAR	~3.2 ns (2x slower)*	~1.4 ns (~same)	1.5 V Rising Edge (1.6x worse), 2.4 V Falling Edge (5.6x worse)	0.28 V Rising Edge, (40% better), 0.74 V Falling Edge (1.6x worse)
No Return Plane w/ Far Decoupling Cap <u>BAD</u>	~3 ns (2x slower)	~3.5 ns (2.7x slower)	1.4 V Rising Edge (1.5x worse), 2.8 V Falling Edge (6.5x worse)	0.86 V Rising Edge (2x worse), 3.4 V Falling Edge (7.5x worse)

^{*}Slower, worse, etc. are in reference to the GOOD design

Summary

Rise/Fall Times:

• The GOOD design had ~2x faster rise times and ~3x faster fall times compared to the BAD design.

Voltage Collapse:

- The GOOD design had **50%–85% less voltage collapse** than the BAD design.
- The GOOD/FAR design was significantly worse than GOOD, especially for **voltage collapse (5.6x worse)** .

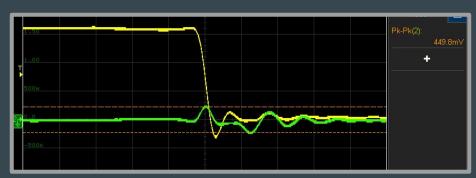
Takeaways:

- Good design practices significantly improve signal integrity —optimized layout reduced rise/fall times by up to 2.7x and minimized voltage collapse on quiet nodes by up to 7.5x , demonstrating the critical impact of proper return paths and proper placement of decoupling capacitors
- Poor layout dramatically increases noise and delays —excessive loop inductance and shared return paths caused longer rise times, severe QHi/QLo voltage collapse (up to 6.5x worse), and greater overall signal degradation

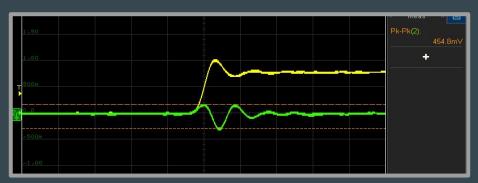
Supporting Data & Measurements

Rising Edge

Falling Edge

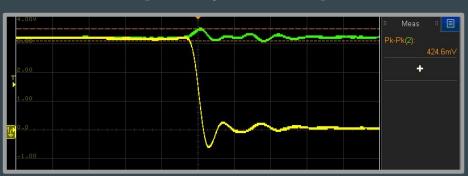


Yellow Waveform: GOOD Design (~1.5 ns) Green Waveform: Good/Far Design (~3.2 ns)


Ref Waveform: BAD Design (~3 ns)

GOOD Design (~1.3 ns)
Good/Far Design (~1.4 ns)
BAD Design (~3.5 ns)

Ground Bounce Quiet Low:



Falling Edge noise: ~450 mV

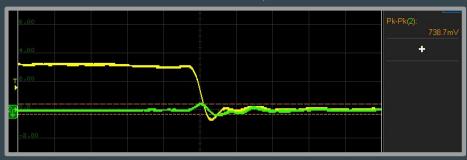


Rising Edge noise: ~455 mV

Voltage Collapse Quiet High:

Falling Edge noise: ~425 mV

Rising Edge noise: ~950 mV

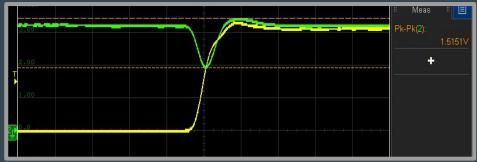

Good/Far Design

Yellow Waveform: 555 Output trig'd on Edge

Green Waveform: Noise on Rail

Ground Bounce Quiet Low:

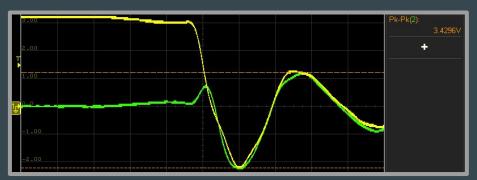

Voltage Collapse Quiet High:



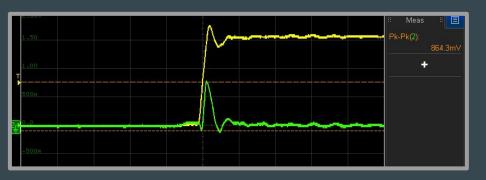
Falling Edge noise: ~740 mV

Falling Edge noise: ~2.4 V

Rising Edge noise: ~282 mV


Rising Edge noise: ~1.5 V

BAD Design

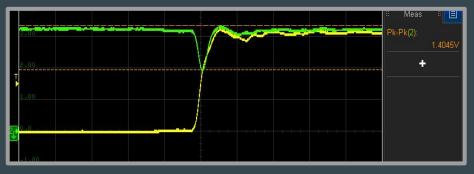

Yellow Waveform: 555 Output trig'd on Edge

Green Waveform: Noise on Rail

Ground Bounce Quiet Low



Falling Edge noise: ~3.4 V



Rising Edge noise: ~864 mV

Voltage Collapse Quiet High:

Falling Edge noise: ~2.8 V

Rising Edge noise: ~1.4 V